Our previous work showed how global emissions of CFC-11 rose, starting in 2013, and that a substantial fraction of these emissions originated from eastern China. In two new papers, we show, using atmospheric observations, that these signals have now reversed. Montzka et al. (2021) uses measurements in the background atmosphere to show a rapid reduction in global emissions in 2019, and Park et al. (2021) identifies a coincident decline from China.
In our new paper in Nature Communications, we show that global emissions of the potent greenhouse gas, HFC-23, rose between 2016 and 2018. This increase came despite reports that emissions should have been reduced by almost 90% between 2015 and 2017. Further details are available in the University of Bristol press release, and some articles and interviews in the press.
There have been several recent papers exploring the growth in methane that has been ongoing since 2007. In a new paper in PNAS, we explore whether changes in the global OH concentration could be playing a role. By looking at trends in methyl chloroform, we infer an intriguing rise and fall in OH over the last 20 years, which could explain some of the methane change. There are significant uncertainties remaining, and much more work is needed before we can determine with confidence the role of changes in both methane sources and sinks. This is the focus of the new UK-wide NERC-funded MOYA project which will be on-going for the next three years.
Dan Say’s work on our re-evaluation of the UK’s HFC emissions featured on the University of Bristol News. Based on an analysis of atmospheric data, we found that the UK’s estimates of the emissions of HFC-134a, used in car air conditioning, were likely too high. Dan took a closer look at the UK inventory and found that estimates of the frequency at which car air conditioning units were refilled, and the number of cars with air conditioning units in them were likely over-estimated in the inventory.
The government is now re-evaluating the assumptions that go in to their HFC-134a calculations.
“The amount of greenhouse gases that the UK produces is calculated annually by the Department for Energy and Climate Change (DECC). Researchers at the University of Bristol independently verify these estimates using atmospheric measurements, making the UK one of only three countries in the world that does so.
“Our work is used by the DECC for monitoring compliance with international and domestic legislation; identifying priorities for improving inventory accuracy; assessing the UK’s progress towards targets set in the Montreal and Kyoto Protocols; evaluating the impact of policy; and informing international negotiations.” – Professor Simon O’Doherty
The UK is signed up to the Montreal Protocol (which aims to reduce the amount of ozone depleting compounds emitted) and the Kyoto Protocol (which aims to reduce the amount of anthropogenic greenhouse gases in the atmosphere). These require the UK to report its emissions on a regular basis, but it’s not as straightforward as simply measuring the gases in the atmosphere.
Reporting the amount of man-made greenhouse gases that the UK produces annually is a challenging task. Like the other 191 countries that have signed up to the Kyoto protocol, the UK uses an inventory approach to estimate the emissions, as directly measuring anthropogenic greenhouse gases is too complicated. This involves estimating emissions from a variety of activities such as burning fossil fuels, agriculture and energy production. But the UK is one of only three countries that go one-step further, by using atmospheric measurements to validate these inventory calculations.
This independent verification is performed by researchers from the University of Bristol’s Atmospheric Chemistry Research Group which is part of the Cabot Institute and the School of Chemistry. Using a combination of physical measurement and sophisticated modelling techniques, Professor Simon O’Doherty and Dr Matt Rigby work in collaboration with Dr Alistair Manning from the UK Met Office to monitor the greenhouse gases in the atmosphere above the UK.
In order to do this, the researchers developed the UK DECC Network – a unique national greenhouse gas monitoring system comprising six stations making high-frequency measurements of key atmospheric trace gases. Analysis and interpretation of these observations using state-of-the-art modelling techniques enables the independent assessment of the UK’s adherence to the Montreal and Kyoto Protocols.
“Our work started more than 20 years ago when we provided data to the Government on the accumulation of ozone-depleting gases in the atmosphere resulting in the signing of the Montreal Protocol,” says O’Doherty. “We have been able to show how the use of chlorofluorocarbons (CFCs) has risen and fallen over the years and that direct measurement of atmospheric gases can be used to monitor the impact of legislation such as the Montreal Protocol.”
Back then O’Doherty only had one monitoring station at his disposal, but today he can use data from a network of stations across the country as well as aircraft, satellites and even ferries that measure climatically important gases such as carbon dioxide, methane and nitrous oxide. When combined with models of atmospheric gas transport, these observations provide an independent means of assessing natural and man-made emissions. As well as monitoring the UK’s compliance with international treaties, these data have been central to recent World Meteorological Office (WMO) Scientific Assessments of Ozone Depletion produced between 2007 and 2010 and to the Nobel Prize-winning Inter Governmental Panel on Climate Change (IPCC) Assessment of Climate Change published in 2007.
The data will also form the basis for negotiations of future targets for UK emissions.
“Future climate treaties will take recent emissions estimates as a baseline from which to plan emissions reductions. Therefore, it’s really important that we are able to get these estimates right, both in the UK and around the world, so that the burden for emissions reductions is shared in a fair way,” says Dr Rigby.
One of the biggest challenges for the future is distinguishing between natural and man-made greenhouse gases. O’Doherty and Rigby are now investigating new techniques that could measure different isotopic compounds and thus distinguish between anthropogenic and naturally emitted greenhouse gases.
Further information
Key facts: • The underpinning research was funded by the Department for Energy and Climate Change, the Natural Environment Research Council and NASA. • Man-made greenhouse gas emissions cannot currently be measured directly but instead are calculated by estimating emission from a number of activities such as the burning of fossil fuels. • Bristol researchers independently verify these calculations by taking atmospheric measurements and using atmospheric models to calculate the source of the emissions. • The UK now has a network of stations, managed by Professor Simon O’Doherty, that continuously monitor important atmospheric gases. • The data from the monitoring stations is used to verify if the UK is adhering to the Montreal and Kyoto protocols, as well as to inform international policy on climate change. • The UK is one of only three countries in the world that collects data and verifies emissions in this way.”
Until now, there has been little verification of the reported emissions of hydrofluorocarbons (HFCs), gases that are used in refrigerators and air conditioners, resulting in an unexplained gap between the amount reported, and the rise in concentrations seen in the atmosphere. This new study shows that this gap can be almost entirely explained by emissions from developing countries.
Currently only 42 countries are required to provide detailed annual reports of their emissions to the United Nations Framework Convention on Climate Change (UNFCCC).
The study, led by Mark Lunt from Bristol’s School of Chemistry used HFC measurements from the international Advanced Global Atmospheric Gases Experiment (AGAGE), in combination with models of gas transport in the atmosphere, to evaluate the total emissions that are reported to the UNFCCC each year.
HFCs are potent greenhouse gases; per tonne of emissions, each gas measured in this work is hundreds or even thousands of times more effective than carbon dioxide at trapping the radiation that warms the Earth.
There is currently no global agreement to regulate the emissions of these compounds, although proposals have been made to begin phasing out their use.
Mark Lunt said: “Any phase-out mechanism would likely be more stringent for the developed countries, but these results show that emissions from non-reporting countries are also highly significant.”
Meanwhile, the researchers note that although their estimates of total emissions from developed countries are broadly consistent with the reports that they compile, this does not necessarily mean that the emissions of each gas are being accurately reported.
In fact, the results suggest that the most commonly used HFC is significantly over-reported whilst some other HFCs are under-reported.
Dr Matt Rigby from the University of Bristol, who co-authored this work, said: “It appears as if the apparent accuracy of the aggregated HFC emissions from developed countries is largely due to a fortuitous cancellation of errors in the individual emissions reports.”
Professor Ron Prinn from the Massachusetts Institute of Technology (MIT), who leads the AGAGE network, added: “This study highlights the need to verify national reports of greenhouse gas emissions into the atmosphere. Given the level of scrutiny these reports are under at the moment, it is vitally important that we improve our ability to use air measurements to check that countries are actually emitting what they claim.”
In a paper published in Geophysical Research Letters, we quantify the influence of anaesthetic gases on global atmospheric radiative forcing. It turns out that inhalation anaesthetics are potent greenhouse gases, with 1 kg of emissions of desflurane (a commonly used anaesthetic) having the influence of around 2,500 kg of CO2. However, emissions of these gases are very low compared to CO2, so the influence on climate is still relatively small.